Researchers Unravel Natural Adhesion System
Adhesion is an extremely important factor in living nature: insects can climb up walls, plants can twine up them, and cells are able to adhere to surfaces. During evolution, many of them developed mushroom-shaped adhesive structures and organs. Lars Heepe and his colleagues at Kiel Univ. have discovered why the specific shape is advantageous for adhesion. The answer is in homogeneous stress distribution between a surface and the adhesive element. The results have recently been published in the renowned scientific journal Physical Review Letters.
Not only the roughness of contacting surfaces but also their contact shapes, also called contact geometry, determine adhesion strength between them. In nature, mushroom-shaped contact geometry prevails. It evolved in diverse terrestrial and aquatic organisms independently – at the nano, micro and macro scale. Examples are among others the bacteria Caulobacter crescentus that clings to surfaces (nano scale), the mushroom-shaped hairs of specific leaf beetles (micro scale), and the Virginia creeper plant (Parthenocissus) (macro scale). “This particular contact geometry developed independently in various living organisms. This fact might indicate an evolutionary adaptation of organisms to optimal adhesion,” says Stanislav Gorb, biologist at the Institute of Zoology at Kiel Univ.
Read more: http://www.laboratoryequipment.com/news/2013/10/researchers-unravel-natural-adhesion-system



macpye
